Headline News

Manufacturing of chemically defined and xeno-free substrates for cultivation of clinical-grade human iPS cells

Osaka University and Nippi Inc., a Japanese biotech company having an expertise in collagen and collagen-related products, succeeded in manufacturing laminin-511 E8 fragment, a very potent cell-adhesive substrates for cultivation of human pluripotent stem cells, in accordance with GMP (good manufacturing practice). The laminin fragment, commercialized from Nippi under the trade name of “iMatrix-511 MG”, is suitable for production of clinical-grade human iPS cells and other stem cells in cell transplantation therapy. The new product will be commercially available in June 2015. iMatrix-511 GM will accelerate the production of a wide variety of pluripotent stem cells, particularly iPS cells, to be used in regenerative medicine.

Structural basis for amyloidogenic peptide recognition by ​sorLA

SorLA is a neuronal sorting receptor considered to be a major risk factor for Alzheimer’s disease. We have recently reported that it directs lysosomal targeting of nascent neurotoxic ​amyloid-β (​) peptides by directly binding ​. Here, we determined the crystal structure of the human ​sorLA domain responsible for ​ capture, Vps10p, in an unbound state and in complex with two ligands. Vps10p assumes a ten-bladed β-propeller fold with a large tunnel at the center. An internal ligand derived from the ​sorLA propeptide bound inside the tunnel to extend the β-sheet of one of the propeller blades. The structure of the ​sorLA Vps10p-​ complex revealed that the same site is used. Peptides are recognized by ​sorLA Vps10p in redundant modes without strict dependence on a particular amino acid sequence, thus suggesting a broad specificity toward peptides with a propensity for β-sheet formation.

Agreement on Academic Exchange between IPR and College of Physical and Mathematical Science, the Australian National University

IPR concluded an academic exchange agreement with College of Physical and Mathematical Science, Research School of Chemistry, the Australian National University on November 20, 2014. The agreement aims to enhance academic exchange and research collaboration among students and researchers between our institutes, with common goal to advance scientific research in Asia and Oceania together.

Grease matrix as a versatile carrier of proteins for serial crystallography

Femtosecond X-ray serial crystallography has revolutionized atomic resolution structural investigation by drastically expanding the accessibility to proteins in small-sized crystals, at room temperature and on dynamic reaction. Despite such an enticing opportunity, robust and reliable crystal carrying media are largely lacking. Here, we introduce a grease matrix carrier for protein microcrystals to obtain the structures of lysozyme, glucose isomerase, thaumatin and fatty acid-binding protein type-3 beyond 2Å resolution under ambient conditions.