DATE: Day <u>15</u> Month <u>6</u> Year 2017 SUMMARY of 2016 RESEARCH RESULTS REPORT For International Collaborative Research with IPR, Osaka University

Research Title		Development and applications of solid-state NMR techniques
		to study the structure and dynamics of biosolids
Applicant	Name	Ramamoothy Ayyalusamy
	Affiliation	Department of Biophysics and Department of Chemistry,
		University of Michigan
	Present Title	Professor
Research Collaborator (Host PI)		Toshimichi Fujiwara
C		•

Summary

Solid-state NMR provides structural information of biological systems in unoriented solids such as biological membranes and fibers which are not amenable to X-ray crystallography owing to difficulties in forming well-ordered crystals. However, applicability of the NMR to biologically important macromolecular complexes is primarily limited by the sensitivity of NMR. Therefore, we apply recent technologies, high-field dynamic nuclear polarization (DNP) and high-speed magic angle spinning, to the sensitivity enhancement of solid-state NMR available at Institute for Protein Research, Osaka University. We have performed several variable temperature high-speed MAS experiments on a membrane protein embedded in vesicles, DNP based MAS experiments on a membrane protein embedded in vesicles, variable temperature MAS experiments on bone and bone-related materials, and DNP based MAS experiments on bone and bone-related materials. We have obtained several promising results for these subjects although they are still preliminary. After these optimization of experimental conditions such as temperature, polarizer concentration, lipid-protein ration and hydration level, we can obtain NMR parameters for structure and dynamics of membrane protein and bone which cannot be acquired by other methods.

^{*}Deadline: May 19, 2017

^{*}Please submit it to E-mail: tanpakuken-kyoten@office.osaka-u.ac.jp.

^{*}We accept only PDF file. Please file it after converting WORD to PDF.

^{*}Please describe this summary within 1 sheet. Please DON'T add some sheets.

^{*}This summary will be published on the web.