1. Shinohara, A., Ogawa H. and T. Ogawa.  Rad51 protein involved in recombination and repair in S. cerevisiae is a RecA-like protein.  Cell, 69. 457-470. 1992, CI=930.

2. Ogawa, T., Shinohara, A., Ogawa, H. and J. Tomizawa.  Functional structures of the RecA protein found by chimera analysis. J. Mol. Biol., 226, 651-660, 1992, CI=36.

3. Ogawa, T., Yu, X., Shinohara, A. and E. Egelman.  The filament formed by the yeast Rad51 protein has a similar structure to the bacterial RecA filament.  Science, 258, 1896-1899. 1993, CI=519.

4. Shinohara, A., Ogawa, H., Mastuda, Y. Ushio, N., Ikeo, K. and T. Ogawa.  Human and mouse homologues of recombination genes of S. cerevisiae RAD51 and E. coli recA.  Nature Genetics, 4, 239-243. 1993, CI=437.

5. Bezzubova, O., Shinohara, A., Mueller, R.G., Ogawa, H. and J.-M. Buerstedde.   A chicken RAD51 homologue is expressed at high level in lymphoid and reproductive organs.  Nucl. Acids. Res., 21, 1577-1580. 1993, CI=108.

6. Terasawa, M., Shinohara, A., Hotta, Y., Ogawa H. and Ogawa T.  Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes & Dev., 9, 925-934. 1995, CI=141.

7. Maeshima, K., Morimatsu, M., Shinohara, A. and T. Horii.  RAD51 homologues in Xenopus lavis: two distinct genes are highly expressed in ovary and testis. Gene, 160, 195-200. 1995, CI=38.

8. Ikeya, T., Shinohara, A., Satoh, S., Tabata, S. and T. Ogawa.  Localization of mouse Rad51 and Lim15 proteins on chromosomes in meiotic prophase.  Genes-to-Cells, 1, 379-389. 1996, CI=21.

9. Tashiro, S., Kotomura, N., Tanaka, K., Ueda, K., Shinohara, A. and N. Kamada.  S-phase specific formation of the human Rad51 protein nuclear foci in lymphocytes. Oncogne, 12, 2165-2170. 1996, CI=134.

10. Shinohara, A., Gasior, S., Ogawa, T., Kleckner, N. and D.K. Bishop.  S. cerevisiae RecA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination.  Genes-to-Cells, 2, 615-630. 1997, CI=126.

11. Mizuta, M., LaSalle, J.M., Cheng, H.-W., Shinohara, A., Ogawa, H., Copeland, N. Jenkins, N., Lalande, M. and F. W. Alt.  RAB22 and RAB163/mouse BRCA2: Proteins that specifically interact with the RAD51 protein. Proc. Natl. Acad. Sci. USA, 94, 6927-6932. 1997, CI=188.

12. Shinohara, M., Yamaguchi, E., Buerstedde, J.-M. Shinagawa, H., Ogawa H. and A. Shinohara.  Characterization of the roles of the S. cerevisiae RAD54 gene and a homolog of RAD54, RDH54/TID1 in mitosis and meiosis.  Genetics, 147, 1545-1556. 1997, CI=138.

13. Huaug, Y., Ishiko, T., Nakada, S., Utsgisawa, T., Kharbanda, S., Wang, R., Sung, P., Shinohara, A., Weichselbaum, R. and D. Kufe.  Regulation of Rad51 function by c-Abl in response to DNA damage.  J. Biol. Chem., 273, 3799-3802. 1998, CI=150.

14. Shinohara, A. and T. Ogawa.  Stimulation of Rad51-mediated recombination by Rad52 in S. cerevisiae.  Nature, 391, 404-407. 1998, CI=317.

15. Sonoda, E., Sasaki, M., Buerstedde, J., Bezzubova, O., Shinohara, A., Ogawa, H., Takata, M., Yamaguchi-Iwai, Y. and S. Takeda.  Rad51 deficient vertebrate cells accumulate chromosomal breaks prior to cell death.  EMBO J., 17, 598-608, 1998, CI=594.

16. Shinohara, A., Shinohara, M., Ohta, T., Matsuda, S. and T. Ogawa.  Rad52 forms ring structure and co-operate with RPA in single-strand DNA annealing.  Genes-to-Cells, 3, 145-156. 1998, CI=188.
17. Katagiri, T., Saito, H., Shinohara, A., Ogawa, H., Kamada, N., Nakamura Y. and Y. Miki.  Multiple possible sites of BRCA2 interacting with DNA repair protein Rad51. Genes, Chromosomes and Cancer, 21, 217-222. 1998, CI=43.

18. Gasior, S., Wang, A., Kohra, Y., Shinohara, A. and D.K. Bishop.  Rad52 associates with RPA and functions with Rad55 and Rad57 to assemble meiotic recombination complexes.  Genes & Dev., 12, 2208-2221, 1998, CI=183.

19. Bishop, D.K., Ear, U., Bhattacharyya, A., Calderone, C., Beckett, M., Weichselbaum, R. and A. Shinohara.  Xrcc3 is required for assembly of Rad51-complexes in vivo. J. Biol. Chem., 273, 21482-21488. 1998, CI=213.

20. Takata, M., Sasaki, M., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., Yamaguchi-Iwai, Y., Shinohara, A., and S. Takeda.  Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in maintenance of chromosome integrity.  EMBO J., 17, 5497-5508. 1998, CI=797.

21. Nishitani, T., Shinohara, A., Ito, Y., Yokoyama, S. and T. Shibata.  Base-pair switching by interconversion of sugar puckers in DNA extended by proteins of RecA family: A model for homology search in homologous genetic recombination.  Proc. Natl. Acad. Sci. USA, 95, 11071-11076. 1998, CI=63.

22. Yamaguchi-Iwai, Y., Sonoda, E., Buerstedde, J.-M., Bezzubova, O., Morisson, C., Takata, M., Shinohara, A. and S. Takeda.  Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52.  Mol. Cell. Biol.,18, 6430-6435. 1998, CI=152.

23. Morrison, C., Shinohara, A., Sonoda, E., Yamaguchi-Iwai, Y., Takata, M., Weichselbaum, R. R. and S. Takeda.  The essential functions of human Rad51 are independent of ATP hydrolysis.  Mol. Cell. Biol., 19, 6891-6897. 1999, CI=74.

24. Morrison, C., Sonoda, E., Takao, N., Shinohara, A., Yamamoto, K., and S. Takeda.  The controlling role of ATM in chromosomal maintenance by recombinational repair.  EMBO J., 19, 463-471. 2000, CI=209.

25. Takao, N., Mori, R., Kato, H., Shinohara, A. and K. Yamamoto.  c-Abl tyrosine kinase is not essential for ataxia telangiectasia function in chromosome maintenance.  J. Biol. Chem., 275, 725-728. 2000, CI=36.

26. Tashiro, S., Walter, J., Shinohara, A., Kamada, N. and T. Cremer. Rad51 accumulation at sites of DNA damage and in post-replicative chromatin.  J. Cell Biol., 150, 283-293. 2000, CI=147.

27. Shinohara, M., Gasior, S., Bishop, D. and A. Shinohara.  The Tid1/Rdh54 promotes the coordination of Rad51 and Dmc1 during meiotic recombination.  Proc. Natl. Acad. Sci. USA, 97, 10941-10819. 2000, CI=119.

28. Kim, J.-M., Maraboeul, F., Kim, S.K., Shinohara, A., and M. Takahashi.  Effect of ions and nucleotides on the interaction of yeast Rad51 and E. coli RecA proteins with single-stranded oligonucleotides.  J. Biochem., 129, 469-475. 2001, CI=6.

29. Hong, E. L., Shinohara, A., and D. K. Bishop.  S. cerevisiae Dmc1 protein promotes renaturation of ssDNA and assimilation of ssDNA into homologous super-coiled duplex DNA.  J. Biol. Chem., 276, 41906-41912. 2001, CI=90.

30. Shinohara, M., Sakai, K., Shinohara, A. and D. K. Bishop.  Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway.  Genetics, 163, 1273-1286. 2003, CI=52.

31. Shinohara, M., Sakai, K., Ogawa, T. and A. Shinohara.  Mitotic DNA damage checkpoint proteins Rad17 and Rad24 promote repair of double-strand breaks during meiosis.  Genetics, 164, 855-865. 2003, CI=43.

32. Tsukamoto, M., Yamashita, K., Miyazaki, T., Shinohara, M. and A. Shinohara.  The N-terminal DNA binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae.  Genetics, 165, 1703-1715, 2003, CI=16.

33. Miyazaki T., Bressan, D.A., Shinohara, M., Haber, J.E. and A. ShinoharaIn vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair.  EMBO. J. 23. 939-949, 2004, CI=81.

34. Zierhut, C., Berlinger, M., Rupp, C. Shinohara, A. and F. Klein.  Mnd1 is required for meiotic inter-homolog repair.  Current Biology, 14. 752-762, 2004, CI=53.

35. Yamashita, K., Shinohara, M. and A. Shinohara. Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proc. Natl.Acad, Sci. USA. 101. 11380-11385, 2004, CI=69.

36. Hayase, A., Takagi, M., Miyazaki, T., Oshiumi, H., Shinohara, M. and A. Shinohara.  A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1.  Cell, 119. 927-940. 2004, CI=70.

37. Otsuki, M., Seki, M., Inoue, E., Yoshimura, A., Kato, G., Yamanouchi, S., Kawabe, Y., Tada, S., Shinohara, A., Komura, J., Ono, T., Takeda, S., Ishii, Y., and T. Enomoto. Functional Interactions between Blm and Xrcc3 in the cell. J. Cell. Biol. 179, 53-63, 2007. CI=15.

38. Luo, J.P., Oh, S. D., Shinohara, M., Shinohara, A. and N. Hunter.  Rad52 promotes post-invasion steps of meiotic double-strand-break-repair. Mol. Cell. 29, 517-52, 2008. CI=63.

39. Shinohara, M., Oh, S.D., Hunter, N. and A. Shinohara. Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis.  Nature Genet. 40, 299-309, 2008. CI=77.

40. Matsuzaki, K., Shinohara, A. and M. Shinohara.  FHA domain of yeast Xrs2, a homologue of human Nbs1, promotes non-homologous end joining through the interaction with a Ligase IV partner protein, Lif1. Genetics, 179, 213-225, 2008. CI=18.

41.Conrad, M.N., Lee, C.-Y., Chao, G., Shinohara, M. Kosaka, H., Shinohara, A., Conchello, J.-A., and M. E. Dresser. Telomeres drive rapid movements regulated by chromosome status in meiotic prophase. Cell, 133, 1175-1187, 2008. CI=102.

42. Kosaka, H., Shinohara, M. and A. Shinohara. Csm4-dependent telomere movement on nuclear envelope promotes meiotic recombination. PLoS Genetics, 4, e1000196, 2008. CI=39

43. Nakamura K, Kogame T, Oshiumi H, Shinohara A, Sumitomo Y, Agama K, Pommier Y, Tsutsui KM, Tsutsui K, Hartsuiker E, Ogi T, Takeda S, and Taniguchi Y. Collaborative Action of Brca1 and CtIP in Elimination of Covalent Modifications from Double-Strand Breaks to Facilitate Subsequent Break Repair. PLoS Genetics, 4, e1000828, 2010. CI=34.

44. Nishant, K.T., Cheng Chen, Miki Shinohara, Akira Shinohara and Eric Alani. Genetic analysis of baker’s yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability. PLoS Genetics, 6, e1001083, 2010 CI=16.

45. Zhu, Z., Mori, D., Oshiumi, H., Matsuzaki, K., Shinohara, M. and A. Shinohara. Cyclin-dependent kinase (CDK) promotes formation of the synaptonemal complex in yeast meiosis. Genes-to-Cells. 15, 1036-1050, 2010, CI=9.

46. Rao, H.B.D.P., Shinohara M. and A.Shinohara The Mps3 SUN domain is important for chromosome motion and juxtaposition of homologous chromosomes during meiosis. Genes-to-Cells. 16. 1081-1096, 2011, CI=11.

47. Shinohara M. and A. Shinohara. Multiple Pathways Suppress Non-Allelic Homologous Recombination during Meiosis in Saccharomyces cerevisiae. PLoS One. 4, e63144, 2013, doi: 10.1371/journal.pone.0063144. CI=7

49. Sasanuma, H. Tawramoto, M.S., Lao, J., Hosaka, H., Sanda, E., Suzuki, M., Yamashita, E., Hunter, N., Shinohara M. Nakagawa, A. and A. Shinohara. A new protein complex promoting the assembly of Rad51 filaments. Nature Comms.4, 1676, 2013, doi: 10.1038/ncomms2678. CI=29.

50. Sasanuma, H. Furihata Y., Shinohara M. and A. Shinohara. Saccharomyces cerevisiae Srs2 helicase disassembles Rad51 from meiotic chromosomes. Genetics, 194, 859-872, 2013, doi: 10.1534/genetics.113.150615. CI=3

51. Tsukamoto, Y., Katayama, C., Shinohara M., Shinohara, A., Maekawa, S. and Miyamoto M. The small GTPase Rab5 homologue Ypt5 regulates cell morphology, sexual development, iron-stress response and vacuolar formation in fission yeast. Biochem. Biophys. Res Commun. 441, 867-872. 2013, doi: 10.1016/j.bbrc.2013.10.158.CI=0.

52. Bani Ismail, M., Shinohara M. and A. Shinohara. Dot1-dependent histone H3K79 methylation promotes the formation of meiotic double-strand breaks in the absence of histone H3K4 methylation in budding yeast. PLoS One. 9, e96648. 2014 DOI: 10.1371/journal.pone.0096648. CI=4.

53. Terasawa, M., Shinohara A., and M. Shinohara. Canonical Non-homologous End Joining in Mitosis Induces Genome Instability and Is Suppressed by M-phase Specific Phosphorylation of XRCC4 via CDKs. PLoS Genetics, 10, e1004563, 2014. DOI: 10.1371/journal.pgen.1004563. CI=14.

54. Shinohara, M, Hayashihara, K., Grubb, J.T., Bishop, D.K., and A. Shinohara. DNA damage response clamp contributes to chromosomal assembly of ZMM-SIC pro-crossover factors during meiosis. J. Cell. Sci. 128, 1494-1506, 2015. doi: 10.1242/jcs.161554. CI=5.

55. Atsumi, Y., Minakawa, Y., Ono, M., Dobashi, S., Snohe, K., Shinohara, A., Takeda, S., Takagi, M., Takamatsu, N., Nakagama, H., Teraoka, H., and K.-I. Yoshioka. ATM and SIRT6/SNF2H mediate transient H2AX stabilization when DSBs form by blocking HUWE1 to allow efficient γH2AX foci formation. Cell Report, 13, 2728-2740. 2015. doi: 10.1016/j.celrep.2015.11.054. CI=0.

56. Santosh, G. K., Patel, K.J., Colletti M.M., Sasanuma, H., Shinohara, M., Hochwagen, A., and A. Shinohara. The Paf1 Complex Shapes the Landscape of Double-strand Breaks along Meiotic Chromosomes in Saccharomyces cerevisiae. Genetics, 202, 497-512, 2016. doi: 10.1534/genetics. 115.177287. CI=1.

57. Subramanian, V.V., MacQueen, A. J., Vader, G., Shinohara, M., Borde, V., Shinohara, A. and A. Hochwagen, Chromosome synapsis alleviates Mek1-dependent suppression of meiotic DNA repair. PLoS Biology, 14, e e1002369. 2016. doi: 10.1371/journal.pbio.1002369. CI=0.

58. Challa, KK., Lee, MS., Shinohara, M., Kim, K.M and A. Shinohara. Rad61/Wpl1(Wapl), a cohesin regulator, controls chromosome compaction during meiosis. Nuclei. Acids Res. 44, 3190-3203.2016.  doi: 10.1093/nar/gkw034. CI=1.

59. Minakawa, Y., Atsumi, Y., Shinohara, A., Murakami, Y., Yoshioka, K.I. Gamma-irradiated quiescent cells repair directly induced DSBs but accumulate persistent DSBs during subsequent DNA replication. Genes-to-Cells, In press. CI=0.


| コメント(0) | トラックバック(0)

1. Ogawa, T., Shinohara, A., Nabetani, A., Ikeya, T., Yu, X., Egelman, E. and H. Ogawa. RecA-like recombination proteins in eukaryotes: Functions and structures of RAD51 gene. Cold Spring Harb. Symp. Quant. 58, 567-576, 1994, CI=77.

2. Ogawa, T., Shinohara, A., and T. Ikeya. A species-specific interaction of Rad51 and Rad52 proteins in eukaryotes. Adv. Biophy. 31, 93-100, 1995, CI=12.

3. Shinohara, A. and T. Ogawa. Homologous recombination and its roles in double-strand break repair. Trends in Biol. Sci. 20, 387-391.1995, CI=168.

4. Shinohara, A. and T. Ogawa. Rad51/RecA protein family and the associated proteine in eukaryotes. Mut. Res. 435, 13-21, 1999, CI=26.

5. Shinohara, A. and M. Shinohara. Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenetics and Genome Research, 107, 201-207. ,2004.

3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
Laboratory of Genome-Chromosome Functions,
Institute for Protein Research,
Osaka Unversity

TEL. 06-6879-8624
FAX. 06-6879-8626